Retargeted Foamy Virus Vectors Integrate Less Frequently Near Proto-oncogenes
نویسندگان
چکیده
Retroviral gene therapy offers immense potential to treat many genetic diseases and has already shown efficacy in clinical trials. However, retroviral vector mediated genotoxicity remains a major challenge and clinically relevant approaches to reduce integration near genes and proto-oncogenes are needed. Foamy retroviral vectors have several advantages over gammaretroviral and lentiviral vectors including a potentially safer integration profile and a lower propensity to activate nearby genes. Here we successfully retargeted foamy retroviral vectors away from genes and into satellite regions enriched for trimethylated histone H3 at lysine 9 by modifying the foamy virus Gag and Pol proteins. Retargeted foamy retroviral vectors integrated near genes and proto-oncogenes less often (p < 0.001) than controls. Importantly, retargeted foamy retroviral vectors can be produced at high, clinically relevant titers (>107 transducing units/ml), and unlike other reported retargeting approaches engineered target cells are not needed to achieve retargeting. As proof of principle for use in the clinic we show efficient transduction and retargeting in human cord blood CD34+ cells. The modified Gag and Pol helper constructs we describe will allow any investigator to simply use these helper plasmids during vector production to retarget therapeutic foamy retroviral vectors.
منابع مشابه
A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance
Hematopoietic stem cell (HSC) gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammare...
متن کاملGenome-wide mapping of foamy virus vector integrations into a human cell line.
Integration-site selection by retroviruses and retroviral vectors has gained increased scientific interest. Foamy viruses (FVs) constitute a unique subfamily (Spumavirinae) of the family Retroviridae, for which the integration pattern into the human genome has not yet been determined. To accomplish this, 293 cells were transduced with FV vectors and the integration sites into the cellular genom...
متن کاملLarge Animal Models for Foamy Virus Vector Gene Therapy
Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O...
متن کاملBET-independent MLV-based Vectors Target Away From Promoters and Regulatory Elements
Stable integration in the host genome renders murine leukemia virus (MLV)-derived vectors attractive tools for gene therapy. Adverse events in otherwise successful clinical trials caused by proto-oncogene activation due to vector integration hamper their application. MLV and MLV-based vectors integrate near strong enhancers, active promoters, and transcription start sites (TSS) through specific...
متن کاملThe Effect of Herpes Simplex Virus Virion Host Shutoff Gene- a New Suicide Gene- on Tumor Cells
Background: The herpes simplex virus (HSV) UL41 gene product, virion host shutoff (Vhs) protein, mediates the rapid degradation of both viral and cellular mRNA. This ability suggests that Vhs protein can be used as a suicide gene in cancer gene therapy applications. The recent reports have shown that the degradation of cellular mRNA during herpes simplex infection is selective. RNA containing A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016